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Introduction
Stroke remains one of the most prevalent and devastating diseases 
affecting the world population. Stroke is the second leading cause 
of death worldwide and the leading cause of long-term disability 
(1). Despite successes in the prevention and treatment of cardio-
vascular diseases (2), the lifetime risk of stroke increased from 
22.8% in 1990 to 24.9% in 2016 (3). Another disturbing trend has 
been an increase in stroke incidence in the young (4), attributed to 
a surge in conventional stroke risk factors, such as hypertension, 
obesity, hyperlipidemia, smoking, and substance abuse (5).

Owing to aging of the population and reduced mortality due 
to improvements in acute stroke care, the prevalence of stroke is 
expected to increase from approximately 3% of the US population 
in 2012 to approximately 4% by 2030, with an estimated annual 
cost approaching $200 billion (6). Stroke survivors are at high risk 
for recurrent strokes and disabling long-term sequelae. Of these, 
one of the most troubling is cognitive impairment. Stroke survi-
vors have double the risk of developing dementia (7), and isch-
emic lesions promote the expression of cognitive deficits in Alz-
heimer’s disease, the major neurodegenerative dementia in the 
elderly (8). Since stroke can be prevented by control of vascular 
risk factors, there have been calls to reduce the impact of demen-
tia by preventing stroke (9).

Approximately 70% of strokes are caused by occlusion of a 
major cerebral artery, usually the middle cerebral artery (3). Major 
causes of large arterial occlusion include thrombosis and embo-
lism, most often caused by atrial fibrillation (10). Occlusion of 
small arteries and arterioles (small vessel disease) leads to small 
ischemic lesions in the basal ganglia and subcortical white matter 

(11). The other major type of stroke is cerebral hemorrhage, occur-
ring in the brain substance (intraparenchymal hemorrhage) (12) or 
the subarachnoid space (subarachnoid hemorrhage) (13). While 
less frequent than ischemic stroke, hemorrhagic stroke is responsi-
ble for much of stroke’s global burden, especially in low- and mid-
dle-income countries, where mortality rates approach 80% (14).

This Review deals with ischemic stroke, specifically the role 
of immune factors. The brain harbors a wide variety of immune 
cells, which are essential for brain development and function (15, 
16) and contribute to several neurological diseases, including 
stroke (17–19). Previously unrecognized interactions between the 
brain and systemic immunity have been identified in the acute 
and chronic phases of ischemic injury. Here, we provide a focused 
account of cerebral and systemic immunity’s impact on the devel-
opment of ischemic injury, its short- and long-term consequences, 
and the therapeutic approaches afforded by targeting the immune 
system. Finally, we will highlight outstanding questions to define 
a path forward for future studies.

Overview of the ischemic cascade
Our understanding of the mechanisms of cerebral ischemia has 
evolved considerably over time (Table 1). In the 1950s and 1960s 
the prevailing notion was that stroke damage was rapid and irre-
trievable, leading to a therapeutic nihilism that lingers to this day. 
Attempts to surgically reopen occluded vessels immediately after 
stroke led to disastrous cerebral hemorrhages (e.g., ref. 20). In 
the 1970s and 1980s, it was observed that the reduction in cere-
bral blood flow (CBF) in the ischemic territory is not uniform. At 
the center of the ischemic territory (ischemic core), flow reduction 
(>80% of preischemic CBF) is so severe that it causes rapid cell 
death. However, at the periphery (ischemic penumbra), CBF is suf-
ficient to keep neurons alive, even though they stop working to save 
energy (21, 22). Major pathogenic factors leading to cell death in 
the penumbra include glutamate excitotoxicity, calcium overload, 
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tors on innate immune cells, enabling 
recognition of a wide variety of molecu-
lar complexes that are perceived as for-
eign and potentially damaging (danger- 
associated molecular patterns [DAMPs]). 
Innate immune cells include neutrophils, 
monocytes, macrophages, and DCs, as 
well as selected groups of lymphocytes, 
e.g., NK cells, γδ T cells, and others (33). 
The ensuing response is directed at elim-
inating the potential threat through a 
massive and indiscriminate humoral and 
cellular inflammatory response. In con-
trast to innate immunity, adaptive immu-
nity requires several days to develop and 
retains memory of antigen exposure (32). 
Adaptive immunity is based on high- 
affinity receptors, including T cell recep-
tors and immunoglobulins.

Innate and adaptive immunity are 
closely interrelated (32). Innate immune 
cells, DCs in particular, initiate adaptive 
immune responses via antigen presenta-
tion to lymphocytes, the typical adaptive 
immune cell. In turn, lymphocytes under-

go clonal expansion in lymphoid organs and return to the circu-
lation to engage the antigen throughout the body. The resulting 
humoral and cellular responses seek to neutralize the offending 
antigen with a remarkable degree of selectivity and specificity. As 
detailed below, cerebral ischemia engages both innate and adap-
tive immunity (Figures 1 and 2), which play a critical role in both 
the acute and chronic phases of the damage.

Cerebral ischemia and innate immunity:  
the brain view
Circulating innate immune cells are quickly engaged at the onset of 
arterial occlusion, ultimately resulting in invasion of the ischemic 
brain by blood-borne immune cells and activation of brain-resi-
dent cells, which can be either beneficial or detrimental (Figure 1).

Intravascular inflammatory events
The sudden interruption of blood flow causing stroke leads to 
endothelial alterations, local trapping of blood cells, platelet-leu-
kocyte adhesion, and activation of the coagulation cascade. The 
endothelium responds to changes in shear rates by expressing 
selectins, which loosely bind circulating leukocytes. Leukocyte 
adhesion takes place in venules within minutes after reperfusion in 
focal ischemic models, although transmigration occurs only after 
the blood-brain barrier (BBB) is compromised and parenchymal 
DAMP and chemokine gradients are established (34). Adhering 
leukocyte and platelets may clog vessels and have been implicated 
in the “no reflow” phenomenon that prevents reperfusion after the 
occlusion is released (ref. 35; but see also ref. 36). Thrombin induc-
es expression of adhesion molecules on endothelial cells through 
activation of protease-activated receptors (37), acts as a chemotax-
in for leukocytes, disrupts endothelial barrier function, and acti-
vates both C3 and C5 components of the complement system (38).

and oxidative stress, and counteracting these factors leads to neu-
roprotection in animals (22, 23). In the 1990s, ischemic cell stress 
was discovered to trigger molecular programs causing immune 
cell activation, inflammation, and programmed cell death. These 
pathogenic events promote the growth of the ischemic core into 
penumbral areas, expanding the injury to the entire ischemic ter-
ritory (23–25). Therefore, cerebral ischemic injury results from a 
chain of events (ischemic cascade) that is triggered by the initial 
ischemic insult and unfolds over several hours or even days (26).

Despite these mechanistic advances, the only effective ther-
apeutic approach has been to salvage the penumbra through 
reperfusion with the clot-busting drug tissue plasminogen activa-
tor (tPA) (27). More recently, successful recanalization has been 
achieved with mechanical thrombectomy in selected patients 
with penumbral tissue (refs. 28, 29, and Table 1). While remark-
ably effective, these treatments can be administered to fewer than 
10% of stroke patients because of exclusion criteria, hemorrhag-
ic complications, and highly specialized resources required for 
thrombectomy (30). However, advances in imaging the penumbra 
may provide the opportunity to rescue salvageable tissue using 
noninterventional means. For example, the recent ESCAPE trial, 
using a peptide that interferes with postsynaptic density protein 
95 (PSD95), provided hints that neuroprotection is feasible in 
human stroke (31). Targeting the immune system is also an attrac-
tive strategy because of the anticipated extended therapeutic win-
dow of efficacy, low hemorrhagic complications, and involvement 
in both acute and chronic phases of the damage.

Innate and adaptive immunity
Innate and adaptive immunity represent the two main branches 
of the vertebrate immune system (32). Innate immunity is rap-
idly activated and relies on low affinity and promiscuous recep-

Table 1. Evolution of the concept of ischemic injury and acute stroke management

Year 1940s and 1950s 1970s and 1980s 1990s–present
Mechanism Energy failure Core: energy failure Core: energy failure

Penumbra: Excitotoxicity/Ca2+ Penumbra: Excitotoxicity/Ca2+

Free radicals Free radicals
Inflammation
Apoptosis
Genes

Therapeutic window <30 minutes 1–2 hours 12–24 hours
Management Anticoagulation Anticoagulation Stroke units

Endarterectomy Stroke units Thrombolysis
Mechanical thrombectomy

Evidence based? No No Yes

In the 1940s and 1950s, rapid energy failure was considered the predominant injury mechanism, 
with a short therapeutic window. With the introduction of the concept of ischemic penumbra in 
1977, the mechanisms were expanded to include glutamate excitotoxicity, Ca2+ overload, and free 
radical damage, and the therapeutic window was assumed to be longer. In the 1990s, changes in gene 
expression were found to drive inflammation and apoptosis in the postischemic brain. Since these 
processes developed hours to days after ischemia, the therapeutic window was felt to be longer. In 
contrast to these mechanistic advances, the mainstay of clinical stroke management has remained 
reperfusion therapy, largely unsuccessfully until the introduction of tPA and, more recently, mechanical 
thrombectomy. Stroke units were introduced in the mid 1970s, but their positive impact on stroke 
outcome was not demonstrated until recently (198).
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also contribute to ischemic injury. Mice deficient in mannose-bind-
ing lectin, the major activator of the lectin cascade, were protect-
ed from ischemic injury (42), whereas deficiency in humans cor-
related with better stroke outcome (43, 44). Complement was also 
implicated in the chronic phase of damage. Injured neurons bind 
to naturally occurring IgMs that recognize DAMPs, such as modi-
fied annexin IV. The ensuing complement activation promotes the 
phagocytosis of stressed neurons by microglia/macrophages (45).

Brain-resident immune cells
After ischemia, microglial activation occurs before the appearance 
of neuronal cell death (46). Early responses are characterized by 
increased arborization and exploratory behavior, followed by dear-

Complement
Activation of the complement system, the humoral branch of 
innate immunity, is consistently associated with unfavorable stroke 
outcome (39) through opsonins (iC3b, C3dg, C3d) and anaphyla-
toxins (C3a, C5a). While intravascularly generated, active com-
plement components might gain access to the brain parenchyma 
through a compromised BBB, complement synthesis also increases 
in microglia (40). Anaphylatoxins act on complement receptors 
on myeloid cells to promote free radical production, secretion of 
proinflammatory cytokines, degranulation, and phagocytosis. The 
C3a receptor is implicated in stroke, and genetic deletion or recep-
tor antagonists reduce stroke and improve functional outcome 
(41). The lectin pathway initiates complement cascades and may 

Figure 1. Cerebral and systemic immune changes in acute stroke: innate immunity. (A) After ischemia, circulating white cells stick to the cerebral endo-
thelium and extravasate into the brain and meninges. Recent evidence implicates the skull bone marrow as a source of meningeal inflammatory cells (101). 
Cerebral ischemia also damages brain cells, which release DAMPs. DAMPs activate innate immune receptors on microglia and other cells, leading to the 
release of cytokines and chemokines, which, in turn, promote additional neutrophil entry. Neutrophils damage the brain by producing ROS, metalloproteas-
es (MMPs), perforins, cytokines, and neutrophil extracellular traps (NETs). Activation of the complement cascade (Cmp) also damages brain cells. (B) Brain 
damage triggers a neurohumoral response (via the hypothalamic-hypophyseal axis and autonomic nervous system), which leads to activation of the adrenal 
glands and secretion of glucocorticoids and catecholamines. Brain-derived DAMPs leak into the circulation and activate systemic immunity, mobilizing 
innate immune cells form lymphoid organs and the gut. The increase in gut permeability may release bacteria and their metabolites into the circulation.  
(C) DAMPs activate systemic immunity through pattern recognition receptors, including TLRs and RAGE, on immune cells. This activation phase is followed 
by immunodepression, attributable mainly to the systemic effects of β-adrenoreceptors, which increases the propensity to post-stroke infections.
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stroke (60, 61). Although the CC3CL1/CX3CR1 pathway has been 
shown to contribute to ischemic injury in mice (62–64), whether 
this is due to changes in neuronal-microglial interactions remains 
to be established.

Peripheral immune cells
Neutrophils. Neutrophils are among the earliest immune cells 
recruited into the ischemic brain. Neutrophils contribute to isch-
emic damage by releasing proteases including elastase, metal-
loproteases (MMP9), cathepsin G, reactive oxygen and nitrogen 
species, and inflammatory IL-1β, and by forming neutrophil extra-
cellular traps consisting of extruded nuclear or mitochondrial 
DNA scaffolds decorated with proteases and cytotoxic histones 
(65–68). However, neutrophils that show signs of alternative acti-
vation, associated with the expression of Arg1 and YM1, might be 
beneficial in cerebral ischemia. For example, since cytotoxic neu-
trophils are generated through TLR4 signaling, it was proposed 
that neuroprotection observed after myeloid-selective TLR4 dele-
tion is due to cytoprotective neutrophils (69, 70).

Myeloid cells. Monocyte-derived macrophage (MDM) influx 
into the ischemic brain requires chemokine signaling (CCL2/
CCR2), and blocking MDM entry exacerbates the outcome of cere-
bral ischemia (71–73). Once in the ischemic brain, MDMs exhib-
it remarkable plasticity, downregulating CCR2 and increasing 
CX3CR1 expression, but the consequence of this switch remains 
unclear (71–73). Early after ischemia, MDMs express markers of 

borization and ameboid transformation within hours after stroke 
onset (47). Microglia contribute to phagocytosis during the first 
days after cerebral ischemia, before the brain infiltration of blood-
borne macrophages (48). While microglia are proinflammatory 
and exhibit cytotoxic activity in vitro, microglial depletion worsens 
stroke outcome (49, 50). Perhaps microglial cells limit poststroke 
inflammation by providing the neurotrophic factor IGF-1, phago-
cytizing dead cells and neutrophils, and suppressing astrocyte acti-
vation (49–52). Astrocytes participate in the immune response to 
ischemia by upregulating proinflammatory genes and promoting 
neutrophil recruitment through C-X-C class chemokines (53, 54).

The role of other brain-resident immune cells, including men-
ingeal and perivascular macrophages, is less well understood. 
Brain macrophage depletion prior to stroke decreases BBB dis-
ruption in meningeal vessels and modestly ameliorates functional 
deficits without affecting infarct volume (55). The meninges also 
contain a sizable population of mast cells primarily located in the 
dura mater (ref. 56 and Figure 1). Mast cells contain granules with 
vasoactive agents and proteases and have been implicated in BBB 
disruption and neutrophil extravasation in cerebral ischemia, and 
deficiency (in Kit–/– mice) or pharmacologic inhibition of mast cells 
confers neuroprotection (56, 57). Neurons may also contribute to 
disruption of immune homeostasis after stroke. Neuronal death 
results in loss of the CSF1R ligand IL-34 (58, 59), which contrib-
utes to microglia depletion, whereas loss of the neuronal frac-
talkines CX3CL1 and CD200 increases microglial activation after 

Figure 2. Cerebral and systemic immune 
changes in the chronic phase of stroke: adap-
tive immunity. (A) With tissue damage, dead 
cells release new antigens that may enter into 
contact with antigen presenting cells (APCs) in 
the brain. (B) Although not firmly established, 
these cells may enter the circulation and home 
into peripheral lymphoid organs. At the same 
time, antigens also reach the circulation and are 
detected by APCs in lymphoid organs. APCs, in 
turn, engage naive lymphocytes, which undergo 
differentiation (T or B cells) and clonal expansion, 
and reenter the circulation. These “autoreactive” 
lymphocytes, sensitized against brain antigens, 
home back into the brain and cause chronic 
inflammation and cytotoxicity, which may under-
lie the chronic sequelae of stroke. 
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parenchyma (97–99). Based on the observation that vascular chan-
nels connect the dura mater with the skull bone marrow, it has been 
proposed that leukocytes, in particular monocytes and neutrophils, 
may enter the brain through this alternative route (100, 101).

Choroid plexus. Owing to a fenestrated endothelium, the cho-
roid plexus is the entry site for patrolling lymphocytes — most-
ly CD4+ central memory T cells — in the healthy brain (102). To 
promote leukocyte trafficking, the choroid plexus epithelium 
constitutively expresses ICAM-1 and VCAM-1, which, together 
with the mucosal vascular adhesion molecule MAdCAM-1, are 
upregulated in stroke (103). Choroid plexus epithelial cells also 
express the chemokine CCL20, which acts on CCR6 on the sur-
face of IL-17–secreting lymphocytes to enable their entry into 
the cerebrospinal fluid (CSF) (104). Monocytes enter the CSF 
through the choroid plexus after ischemic stroke (105). CD73, an 
ecto-ATPase expressed on choroid plexus epithelial cells and lym-
phocytes, mediated monocyte/macrophage trafficking across the 
choroid plexus in a model of spinal cord injury (106). CD73 dele-
tion exacerbated ischemic brain injury in mice, indicating that the 
choroid plexus could be an entry site for “neuroprotective” mono-
cytes (107). In addition, the stroma of the choroid plexus contains 
brain-resident macrophages and DCs expressing MHC class II 
molecules, which may present antigens to T cells (108).

Cerebral ischemia and innate immunity:  
the systemic view
After brain damage, DAMPs and cytokines leak into the circula-
tion and activate systemic immunity. Brain damage also activates 
neurohumoral pathways, which contribute to immune activation 
and inflammation and, later, immunodepression (Figure 1).

Stroke and lymphoid organs: immune activation to immunodepression
Brain-generated DAMPs and cytokines produced during isch-
emic injury’s early phase reach the systemic circulation through 
disrupted BBB or CSF drainage lymphatic pathways (109). In 
animals as in humans, circulating HMGB-1 increases with acute 
stroke, and blocking the HMGB-1/RAGE axis confers protection 
in animals (110, 111). Circulating DAMPs and cytokines induce an 
immune response in lymphoid organs, triggering inflammation. 
For example, signals from the postischemic brain reach cervical 
lymph nodes and promote systemic inflammation through VEGF3 
receptors (112). In experimental stroke, this immune response is 
characterized by elevated serum cytokines (IL-6, IFN-γ, CXCL1) 
and increased production of inflammatory mediators in circulat-
ing and splenic immune cells (TNF, IL-6, IL-2, CCL2, and CXCL2) 
within hours after ischemia (113, 114). This response is transient 
and subsides within 24 hours after stroke. Comparable changes 
can be observed in stroke patients. TNF and IL-6 are increased 
at stroke onset (<24 hours) (115), and IL-6 serum levels correlate 
with stroke severity and unfavorable outcome (116). Clinical stud-
ies also report acute modifications in the transcriptome of circu-
lating innate immune cells (117, 118), and experimental studies 
demonstrate differences in immune cell compartments in bone 
marrow, spleen, lymph nodes, and gut (119).

Postischemic immune activation is followed by immunode-
pression, which is linked to poststroke infections, a major cause 
of morbidity and mortality (120). Early studies on the immune 

alternative activation, including Arg1, YM1 (Chil3), and CD206 
(Mrc1) (74), consistent with a protective role. However, later on, 
they exhibit a proinflammatory phenotype that may contribute to 
chronic inflammation (74–76). Some MDMs are closely associated 
with blood vessels (71, 75), and Ccr2–/– mice, in which postisch-
emic MDM influx does not occur, showed reduced expression 
of TGF-β1, thrombospondin, and collagen-4, leading to vascular 
instability, hemorrhagic transformation, and reduced angiogene-
sis (72, 77), suggesting a vasoprotective role. The spleen is a source 
of brain MDMs (78, 79) and may be important for regulating the 
immune response after stroke (80–82).

Dendritic cells. DCs are antigen-presenting cells with high 
migratory capacity, derived from dendritic (conventional cDC1 and 
cDC2 and plasmacytoid DC) or monocytic (moDC) lineages (83). 
DCs are found in the ischemic brain early after injury and persist 
for at least 7 days (84). Xcr1–CD172+ cDC2s were identified as the 
major population contributing to ischemic brain injury in mice; 
this subtype secretes IL-23, inducing IL-17 expression in γδ T cells 
and neutrophil infiltration (85). CD209+ DCs have been observed 
in human poststroke brains up to 4 weeks after onset. DCs showed 
perivascular location and were in close proximity to T cells, indicat-
ing possible antigen presentation within the ischemic territory (86).

Lymphocytes and NK cells. T cells are detrimental early after 
ischemia, and lymphocyte-deficient mice are protected in mod-
els of focal ischemia (87, 88). The mechanism does not involve 
antigen-mediated T cell activation, and cytotoxic activity may 
be tied to innate T cell functions (88). Accordingly, natural IL-17–
secreting γδ T cells contribute to ischemic injury by inhibiting 
neutrophil infiltration (53, 85, 89, 90). NK cells also contribute 
to ischemic brain injury (91). CX3CR1 expression on NK cells is 
required for neutrophil recruitment, which depends on IFN-γ and 
perforin expression, pointing at a direct neurotoxicity of NK cells 
(91). While effector lymphocytes may contribute to focal ischemic 
injury, Tregs appear in ischemic tissue after the acute phase and 
confer neuroprotection by downregulating postischemic inflam-
mation via IL-10 (92).

Entry points of peripheral immune cells
Blood-brain barrier. The BBB’s first opening, due to increased tran-
scytosis, occurs within hours after cerebral ischemia (93). The sec-
ond opening occurs 24 to 48 hours later and is characterized by pro-
teolytic degradation of tight junctions and basement membranes, 
and loss of vascular cells, including endothelial cells, pericytes, and 
astrocytic end-feet (94). During this later phase, substantial infiltra-
tion of peripheral immune cells is observed. However, neutrophils 
are often found stuck around blood vessels (perivascular cuffs), 
which could be due to the barrier function of the glia limitans or to 
a lag in the implementation new transcriptional programs enabling 
parenchymal entry (65), which relies on the scavenger receptor 
CD36 and CSF3 in cerebral endothelial cells (95).

Meninges. Neutrophils are found on the abluminal site of lep-
tomeningeal vessels within hours after experimental stroke (96). 
Tissue samples of human stroke victims reveal a strong association 
of neutrophils with leptomeningeal vessels (97). Whether menin-
geal neutrophils go on to infiltrate the ischemic territory remains 
to be established, but their entry is supported by the fact that accu-
mulation in the meninges precedes their appearance in the brain 
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status of stroke patients found prolonged peripheral lymphopenia 
and reduced T cell responsiveness (121, 122). Similarly, loss of cir-
culating and splenic B, T, and NK cells was observed after experi-
mental stroke (123). Mechanistically, this involves activation of the 
autonomic nervous system and the hypothalamic-adrenal axis, 
leading to the release of norepinephrine, acetylcholine, and glu-
cocorticoids (refs. 123–125 and Figure 1). These mediators act syn-
ergistically to induce splenic atrophy, T cell apoptosis, and NK cell 
deficiency via norepinephrine and glucocorticoids. In the bone 
marrow, tyrosine hydroxylase and norepinephrine increase 1 day 
after stroke in mice (126). This triggers a response in mesenchy-
mal stromal cells, through β3-adrenergic receptors, suppressing 
cell retention factors such as IL-7, CXCL12, VCAM-1, and angio-
poietin-1. Downregulation of these factors promotes myeloid lin-
eage proliferation, suppresses lymphoid lineage progression, and 
results in lymphopenia (126). The sympathetic nervous system 
also plays a role in this response. In mice, β-adrenergic receptor 
inhibition lowers bacteremia and lung colonization and increas-
es survival rates along with preservation of splenic and circulat-
ing lymphocytes (123). Vagus nerve stimulation or activation of 
α7-nicotinic acetylcholine receptor is protective in focal cerebral 
ischemia (127–130), but it also increases pulmonary infections, 
thus limiting its translational value (131).

The gut-brain axis in stroke
Conventional lymphocytes and γδ T cells traffic from small intes-
tine to brain and meninges after stroke, where they exacerbate 
ischemic injury (89, 132). Neurohumoral signals generated by 
the ischemic brain in turn affect immune homeostasis, intesti-
nal barrier function, and microbiota. Importantly, up to 50% of 
stroke patients experience gastrointestinal complications, includ-
ing altered motility, microbial dysbiosis, and intestinal bleeding, 
which are associated with increased mortality rates and impaired 
functional recovery (133). In mice, β-adrenergic signaling disrupt-
ed intestinal mucin production, increased gut permeability, and 
changed microbial composition after stroke (132, 134). Gut barrier 
disruption was associated with increased bacterial translocation 
and seeding of intestinal bacteria to blood, liver, and lungs (135). 
Interestingly, aged mice were more susceptible to bacterial trans-
location and failed to clear bacteria owing to a more severe post-
stroke immunosuppression (136). A recent study identified TREM1 
upregulation in intestinal macrophages as a possible mediator of 
intestinal barrier disruption caused by β-adrenergic signaling (137).

Adaptive immunity, chronic inflammation, and 
long-term stroke sequelae
Increasing evidence indicates that after stroke, antigen presenta-
tion engages adaptive immunity. The next sections discuss adap-
tive responses affecting the postischemic brain and their role in 
the neuropsychiatric sequelae of stroke.

Adaptive immunity and stroke
Starting immediately after the stroke, novel brain antigens gener-
ated by cell stress and damage reach the circulation and stimulate 
B and T lymphocytes in spleen and lymph nodes. Concurrently, 
dead cells are also phagocytosed by myeloid cells in the brain, 
which upregulate the MHC class II to become antigen-presenting 

cells, then migrate to lymph nodes and spleen (138). This antigen 
presentation process is likely to occur both inside and outside the 
brain (Figure 2). Indeed, T cells migrate to the ischemic region in an 
antigen-independent fashion within days after stroke and are pres-
ent in the lesion (90). However, a recent study reported that Tregs 
with a brain-specific signature accumulated during the chronic 
phase of stroke independently of antigen presentation (139). The 
Tregs expanded locally, and their function required IL-2, IL-33, and 
serotonin signaling via the HTR7 receptor. Tregs limited astrogli-
osis, suppressed the neurotoxic phenotype of astrocytes, and pro-
moted functional recovery without affecting infarct volume. Sim-
ilarly, although B lymphocytes are not present in large numbers in 
the brain early after stroke (140), regulatory B cells are protective 
(141) and may also increase beneficial Treg activity (142).

Antigen-dependent autoimmunity is also present after stroke 
(143). Autoreactive CD4+ and CD8+ T cells and B cells increase 4 
days after stroke (144). In stroke survivors, peripheral blood lym-
phocytes tested in the second week after stroke demonstrate more 
activity against myelin than those in controls or even people with 
multiple sclerosis (145). This autoimmunity, similar to antigen- 
independent responses, can be harmful or beneficial dependent 
on polarization of T lymphocytes. For example, prior tolerization 
of Tregs specific to the brain antigen myelin oligodendrocyte gly-
coprotein (MOG) leads to IL-10–dependent neuroprotection after 
stroke (146). Conversely, a proinflammatory stimulus after stroke, 
such as LPS in rats or infection in humans, will lead to a detrimen-
tal Th1 response against brain antigens and worse outcomes (147, 
148). Late B lymphocyte responses also occur after stroke, and 
CNS antibody production may increase over time, with about half 
of stroke survivors exhibiting intrathecal antibody synthesis after 
the first week (149–151). However, the duration of this response 
and its impact on outcome remain unclear.

Poststroke dementia
There are tantalizing links between adaptive immunity, chron-
ic inflammation, atrophy, and dementia after stroke (Figure 2). In 
humans, inflammation persists in the blood months after stroke 
(152, 153), and can last much longer in the brain. In about half of 
stroke survivors, activated microglia and astrocytes, foam cells, and 
lymphocytes in the stroke are present decades after the event (140, 
154). Interestingly, ischemia-induced inflammation is longer lasting 
in the brain than in the heart (155). Chronic inflammation is neuro-
toxic, and the glial scar that surrounds it is devoid of tight junctions 
in both humans and mice (155, 156). It is permeable to albumin and 
antibodies, perhaps causing peristroke neuronal injury (156).

In humans, the link between brain atrophy and chronic brain 
inflammation is not well established. Poststroke atrophy has been 
attributed to loss of network integrity that causes atrophy of con-
nected regions (157). Brain atrophy can also occur from stroke 
risk factors in the absence of clinical stroke (158–162), and medial 
temporal atrophy, which may occur prior to stroke, is associated 
with cognitive decline after stroke (163). However, high C-reac-
tive protein levels within 72 hours of stroke were linked to hippo-
campal atrophy and worse cognition one year later (164). In mice, 
atrophy also occurs late after stroke and is partially dependent on 
the proinflammatory cytokine osteopontin, although a role for lost 
connectivity among brain regions cannot be ruled out (155, 156).
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Stroke changes cognitive trajectory and doubles the risk of a 
new diagnosis of dementia (7). Both stroke risk factors and recur-
rent stroke may contribute to the increased dementia risk (165, 
166). It is of interest that, in animal models, inflammation can 
cause cognitive decline with or without stroke. High-salt diet with-
out stroke can increase peripheral Th17 cells that drive cognitive 
decline through a deficit in endothelial NO and accumulation of 
insoluble tau (167, 168). TLR4 signaling promotes aberrant neuro-
genesis that causes cognitive decline after stroke (169, 170). B lym-
phocytes, perhaps as part of an autoimmune response triggered by 
a proinflammatory state, also cause loss of hippocampal long-term 
potentiation and cognitive decline (140). In humans, an associa-
tion between anti-MBP antibodies and cognitive decline has been 
shown (171), and a proinflammatory state in the blood 2 days after 
stroke is associated with subsequent cognitive decline (152).

Poststroke fatigue and depression
Fatigue and depression often are difficult to disentangle from 
each other and from poststroke cognitive impairment, and are 
a substantial barrier to recovery and rehabilitation (172, 173). 
But, as with poststroke dementia, there are only small or single 
studies linking depression and fatigue to neuroinflammation 
after stroke (174–176), and this is a highly relevant and fertile 
area for future research.

Postischemic immunity as a therapeutic target 
in humans
Immune therapy for stroke has focused primarily on reducing 
injury volume and improving functional outcomes. Several drugs 
targeting the immune system that were effective in preclinical 
studies have failed in clinical trials (Figure 3 and Supplemental 
Table 1; supplemental material available online with this article; 
https://doi.org/10.1172/JCI135530DS1), and there is no currently 
FDA-approved immunomodulatory drug for stroke. There are two 
FDA-approved immunomodulatory drugs with extensive safe-
ty records that may be beneficial in stroke: Fingolimod, a sphin-
gosine-1 phosphate receptor modulator that prevents lymphocyte 
egress from lymph nodes, was approved by the FDA for multiple 
sclerosis (177). A small study demonstrated better 90-day out-
comes by Barthel index and modified Rankin scale in 22 patients 
(178), and there is an ongoing study of fingolimod in hemorrhag-
ic stroke (179). There are also promising data for an IL-1 receptor 
antagonist, which reduced stroke size in one study (180) and the 
peripheral immune response but not stroke size in another (181).

The reasons for failure of preclinically effective agents in clin-
ical trials in stroke have been extensively debated (182–184). One 
reason could be that clinical trials and animal studies have tradi-
tionally used different designs. For example, clinical trials often 
have a longer interval between ischemia and drug dosing than pre-

Figure 3. Timing and success of selected immu-
nomodulatory therapies for stroke. Human 
studies were selected as those that were later 
stage and utilized immunomodulatory drugs or 
antibodies. For each agent, the human studies 
are listed in chronological order, with the length 
of the bars indicating the treatment period from 
the time the participant was last seen normal. 
Below the human trials are animal studies with 
that agent where the first dose was delivered 
after stroke, and either infarct size or neurolog-
ical outcome was tested. If both were positive, 
the animal studies are marked with a circle, and 
if both were negative, they are marked with an 
x. In cases where only neurological outcome or 
only stroke size was tested, or where one was 
positive and the other negative, the study is not 
marked with a symbol. Comorbidities in animal 
studies were aging, diabetes, hypertension, and 
hypercholesterolemia. Additional details and ref-
erences are in Supplemental Table 1. *This study 
had a positive effect in males but not females. 
**Drug dose timing listed only as mean ± SD, 
which is graphed here.
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salvageable tissue that is not functional but not yet dead, marked by 
low but not lethally reduced blood flow (penumbra). Whether and 
how post-thrombectomy reperfusion reshapes immune responses 
after stroke remain to be established. After reperfusion, circulating 
white cells may gain better access to the brain, which may modify tis-
sue outcome. In about 50% of patients, arterial recanalization does 
not restore tissue perfusion and neurological function (futile reca-
nalization) (197); the role of innate immunity in this process remains 
unexplored. Furthermore, it will be interesting to assess the impact 
of mechanical thrombectomy on adaptive immunity and poststroke 
sequelae. Fatigue, depression, and cognitive decline are large prob-
lems for stroke survivors that may be linked to inflammation. This 
issue is particularly pressing in light of the anticipated increase in 
stroke prevalence due to reduced mortality in the acute phase (see 
Introduction). Despite recovery of sensorimotor and language defi-
cits, neuropsychiatric sequelae have a paramount negative impact 
on the quality of life of stroke survivors. Animal and human studies 
addressing the role of adaptive immunity and chronic inflamma-
tion in these long-term sequelae would advance our understanding 
of these poorly studied phenomena and suggest new therapeutic 
approaches to be tested in clinical trials.

In this regard, animal studies should focus more on the neu-
ropsychiatric consequences of stroke. Considering the complex 
innate and adaptive immune changes occurring in stroke, treat-
ments targeting the immune system may be beneficial in reduc-
ing injury volume and motor deficits, but may not affect, and may 
even exacerbate, long-term sequelae. In addition, these long-term 
effects are more likely to occur with comorbidities and recurrent 
strokes, and should be routinely evaluated in animal studies. 
Addressing these critical issues will require concerted effort by 
both basic and clinical neuroscientists to harmonize protocols 
and approaches between experimental studies and clinical trials. 
On the one hand, basic science studies should attempt to better 
mimic the complexity of human trials by using models incorporat-
ing aging and comorbidities, studying both sexes and long-term 
sequelae, and adopting randomization, blinding, and data anal-
ysis protocols comparable to those of clinical trials. On the other 
hand, clinical trials should be aware of the therapeutic window 
of the agents used, confirm salvageable tissue and target engage-
ment, and be adequately powered to assess efficacy in stroke sub-
types. Questions raised by clinical trials can then be brought back 
to the bench for mechanistic investigations to refine subsequent 
trials and maximize potential beneficial effects. Such synergistic 
interaction between basic and clinical studies would be particu-
larly valuable in efforts to modulate immunity for therapeutic pur-
poses and advance stroke therapy to the next level.
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clinical studies (Figure 3 and Supplemental Table 1) and are some-
times underpowered. On the other hand, animal studies have not 
always assessed efficacy in females, which constitute 50% of stroke 
patients, and power calculations, randomization, and blinding were 
not always implemented (184). Preclinical studies are generally 
performed in young adults without comorbidities, whereas most 
stroke patients are older, with high rates of obesity, hypertension, 
hyperlipidemia, and diabetes. Conventional stroke risk factors and 
infections have profound impact on the immune system and stroke 
outcome (185), and need to be incorporated into preclinical models 
(186). Reproducibility and publication bias against negative results 
have also emerged as a problem in preclinical research (184, 187). 
However, there have been increasing calls to harmonize the design 
of clinical and preclinical animal trials, include both sexes, use aged 
animals with comorbidities, and implement steps to increase repro-
ducibility (188, 189). These approaches have started to pay off. For 
example, an IL-1 receptor antagonist demonstrated benefit in aged 
obese rats with dyslipidemia (190, 191). Furthermore, a random-
ized multicentric preclinical trial using antibodies against VLA-4 
reduced brain injury only in small infarcts caused by permanent 
ischemia (192). This result suggests that immunomodulators may 
be effective only in certain types of strokes, which may help explain 
the failure of the clinical trial using VLA-4 antibodies (193).

Conclusions and future directions
The data reviewed above provide strong evidence of an important 
role of the immune system in acute and chronic phases of ischemic 
damage, as well as in the long-term sequelae of stroke. Cerebral 
ischemic injury engages both innate and adaptive immunity, in 
the brain and systemically. The ensuing immune response plays 
a key role in stroke outcome. In the past, several clinical trials 
attempted to target postischemic immune responses with disap-
pointing results, in part due to an incomplete understanding of 
poststroke immunity (19). Fortunately, our understanding of the 
immunology of stroke has improved, and we have gained a more 
nuanced appreciation for the diverse roles that innate and adap-
tive immunity plays in stroke. For example, the powerful innate 
immune response to acute ischemia is damaging to the brain in the 
acute phase of stroke, but in the late phase, Tregs, microglia, and 
macrophages may be protective and set the stage for postischemic 
repair processes. Accordingly, future clinical trials must take into 
consideration the double-edged role of the immune system, and 
treatments must be tailored to the specific stage of tissue damage 
evolution and inflammatory response and would benefit from 
imaging approaches assessing inflammation (194). These clinical 
efforts would benefit from animal studies examining in great-
er detail the signaling mechanisms that shift immune respons-
es from deleterious to beneficial. Gaining better insight into the 
interaction between systemic immunity and the brain, in animal 
models as in human stroke, is an important area of research. Sys-
temic lymphoid organs and the gut are influenced by stroke, with 
profound effects on brain damage evolution. Changes in systemic 
immunity may also impact poststroke infections, and the role of 
gut bacteria as an infectious source should be investigated.

Stroke therapy changed dramatically in 2018 with the DAWN 
and DEFUSE 3 intravascular thrombectomy trials (Table 1 and refs. 
195, 196). Sophisticated real-time imaging techniques can now detect 
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